a2 United States Patent

US009122675B1

(10) Patent No.: US 9,122,675 B1

Schanbacher (45) Date of Patent: *Sep. 1, 2015
(54) PROCESSING NATURAL LANGUAGE (56) References Cited
GRAMMAR
U.S. PATENT DOCUMENTS
(71) Applicant: West Corporation, Omaha, NE (US) 5974413 A * 10/1999 Beauregard etal. ... U1
(72) Inventor: Steven John Schanbacher, Omaha, NE g:g;ﬁ:g% gl 3%882 giﬁlron etal.
(Us) 6,438,545 B1* 82002 Beauregard etal. /1
6,983,239 Bl 1/2006 Epstein
(73) Assignee: West Corporation, Omaha, NE (US) 6,985,851 B2 1/2006 Weise et al.
7,107,522 B1* 9/2006 Morganetal. 715/201
(*) Notice: Subject. to any disclaimer,. the term of this ;:i;:ggg gé: 18%882 %;)cr}%z? etal - ;}gggé
patent is extended or adjusted under 35 7,269,664 B2* 9/2007 Hutschetal. 709/246
U.S.C. 154(b) by 0 days. 7,353,176 Bl1* 4/2008 Barayetal. 704/275
R R R R R 7.434,176 B1* 10/2008 Froloffccccccevvvenen. 715/839
This patent is subject to a terminal dis- 7493251 B2 2/2009 Gao ctal.
claimer. 7,536,711 B2* 5/2009 Miyashitaetal. 726/3
7,546,334 B2* 6/2009 Redlichetal. 709/201
(21) Appl. No.: 14/324,943 7,552,116 B2 6/2009 Chang et al.
7,610,191 B2 10/2009 Gao et al.
. 7,725,923 B2* 5/2010 Miyashita et al. ..
(22) Filed: Jul.7,2014 7788265 B2* 2010 Morscher etal. ..
7,822,598 B2 10/2010 Carus et al.
Related U.S. Application Data 7,921,360 B1* 4/2011 Sundermeyeretal. 715/255
. . L 7,991,608 B2* 82011 Johnsonetal. 704/9
(63) Continuation of application No. 14/171,942, filed on 8,311,795 B2 11/2012 Arning et al.
Feb. 4, 2014, now Pat. No. 8,805,677, which is a (Continued)
continuation of application No. 12/703,435, filed on
Feb. 10, 2010, now Pat. No. 8,666,729. Primary Examiner — Edgar Guerra-Erazo
(51) Int.CL 57 ABSTRACT
Go6l’ 17/27 (2006.01) Creating and processing a natural language grammar set of
Go6l" 17/28 (2006.01) data based on an input text string are disclosed. The method
GOG6F 1721 (2006.01) may include tagging the input text string, and examining, via
GI0L 21/00 (2013.01) a processor, the input text string for at least one first set of
GIOL 15/04 (2013.01) substitutions based on content of the input text string. The
GIOL 1526 (2006.01) method may also include determining whether the input text
GIOL 17/00 (2013.01) string is a substring of a previously tagged input text string by
(52) US.CL comparing the input text string to a previously tagged input
CPC e GO6F 17/28 (2013.01) text string, such that the substring determination operation
(58) Field of Classification Search determines whether the input text string is wholly included in
USPC ... 704/4, 5, 6, 9, 10, 270, 270.1, 275, 251, the previously tagged input text string.

704/252, 253, 254
See application file for complete search history.

1017

Tagging the input text string.

20 Claims, 2 Drawing Sheets

l

Examining,

text string.

text string for at least one first set of
102/\/substitutions based on content of the input

via a processor, the input

l

Determining whether the input text
string is a substring of a previously tagged
103~ ‘input text string by comparing the input text
string to a previously tagged input text string,
such that the
operation determines whether the input text
string is wholly included in the previously
tagged input text string.

substring determination

US 9,122,675 B1

Page 2
(56) References Cited 2007/0073745 Al* 3/2007 Scottetal.cccoovenne 707/100
2007/0162275 Al 7/2007 Ablondi et al.
U.S. PATENT DOCUMENTS 2007/0179776 A1 8/2007 Segond et al.
2007/0185702 A1 8/2007 Harney et al.
2002/0046018 Al 4/2002 Marcu et al. 2007/0203688 Al 82007 Fujietal.
2002/0138248 Al 9/2002 Corston-Oliver et al. 2008/0033714 Al 2/2008 Gupta
2003/0061027 Al 3/2003 Weise et al. 2008/0275694 Al 11/2008 Varone
2003/0130837 Al 7/2003 Batchilo et al. 2009/0083034 Al 3/2009 Hernandez et al.
2003/0139921 Al 7/2003 Byrd etal. 2009/0157385 Al* 6/2009 Tian ...o.ccoovvrrrevrrrenrs 704/9
2005/0060140 Al 3/2005 Maddox 2010/0010804 Al 1/2010 Friedman et al.
2005/0192792 A1 9/2005 Carus et al. 2010/0211379 A1* 82010 Gormanetal. 704/9
2006/0074634 Al 4/2006 Gao etal. 2011/0301941 A1* 12/2011 DeVochtcooovvne.... 704/9
2006/0259345 Al 11/2006 Stetina
2007/0073678 Al* 3/2007 Scottetal.coccoorrnven. 707/5 * cited by examiner

U.S. Patent Sep. 1, 2015 Sheet 1 of 2 US 9,122,675 B1

‘o1 - Tagging the input text string.

\ 4

Examining, via a processor, the input
text string for at least one first set of
102/¢ substitutions based on content of the input
text string.

A4

Determining whether the input text
string is a substring of a previously tagged
input text string by comparing the input text
string to a previously tagged input text string,
such that the substring determination
operation determines whether the input text
string is wholly included in the previously
tagged input text string.

103

FIG. 1

U.S. Patent

Sep. 1, 2015 Sheet 2 of 2 US 9,122,675 B1
200
220 210
PROCESSOR MEMORY
SOFTWARE
MODULE
230"

FIG. 2

US 9,122,675 Bl

1
PROCESSING NATURAL LANGUAGE
GRAMMAR

CROSS REFERENCE TO RELATED
APPLICATIONS

The present application is a continuation from U.S. patent
application Ser. No. 14/171,942, filed Feb. 4, 2014, and
entitled “PROCESSING NATURAL LANGUAGE GRAM-
MAR?”, which is a continuation from U.S. patent application
Ser. No. 12/703,435, filed Feb. 10, 2010, and entitled “PRO-
CESSING NATURAL LANGUAGE GRAMMAR?”, which
is related to U.S. patent application Ser. No. 12/107,119, filed
Apr. 22, 2008 and titled AUTOMATIC SPEECH TAGGING
SYSTEM AND METHOD THEREOQOF, the entire contents of
which are incorporated by reference herein.

TECHNICAL FIELD OF THE INVENTION

This invention relates to a method, apparatus and computer
readable storage medium for processing a natural language
grammar, and, more particularly, a natural language grammar
set of data that is based on a plurality of input text strings.

BACKGROUND OF THE INVENTION

Speech recognition technologies permit a user to interface
with a computerized system using spoken language. Speech
recognition technology receives spoken input from the user,
interprets the input, and then translates the input into a form
that the computer system understands. More particularly,
spoken input in the form of an analog waveform voice signal
is digitally sampled. The digital samples are then processed
by the speech recognition system according to a speech rec-
ognition algorithm.

Speech recognition systems typically recognize and iden-
tify words or utterances of the spoken input by comparison to
previously obtained templates of words or utterances or by
comparison to a previously obtained acoustic model of a
person who is speaking. The templates and acoustic model
are typically generated based upon samples of speech.

An example of a known speech recognition technique is
known as word-level template string matching. During word-
level template string matching, the spoken input signal is
compared to pre-stored template strings which represent vari-
ous words and phrases. Generally, a template which most
closely matches the spoken input is selected as the output.

Another example of a known speech recognition technique
is acoustic-phonetic recognition. According to acoustic-pho-
netic recognition, the spoken input signal is segmented and
identified according to basic units of speech sound known as
phonemes. The results of segmentation and identification are
then compared to a pre-stored vocabulary of words. The word
or words which most closely match the spoken input are
selected as the output.

Yet another example of a known speech recognition tech-
nique is stochastic speech recognition. According to stochas-
tic speech recognition, the spoken input is converted into a
series of parameter values which are compared to pre-stored
models. For example, the pre-stored models can be based on
probabilities. In operation, samples of spoken words or sen-
tences are received and then represented as parameter values
which take into account statistical variation between different
samples of the same phoneme. Probabilistic analysis is uti-
lized to obtain a best match for the spoken input. Known
algorithms for probabilistic analysis are the Baum-Welch
maximum likelihood algorithm and the Viterbi algorithm.

10

20

25

30

35

40

45

50

55

60

65

2

Major considerations for such speech recognition pro-
cesses are processing speeds and overall speech recognition
accuracy. One of the common processes associated with
speech recognition is building a natural language (NL) gram-
mar vocabulary that can be used to ultimately represent the
user’s speech input. Building a NI grammar vocabulary from
tagged data can be a burdensome process. It typically takes a
human several weeks to complete an entire language gram-
mar vocabulary by hand. Developing a NL grammar vocabu-
lary engine that performs at real-time or near real-time speed,
and that maintains a level of accuracy comparable to a human
performing a NI grammar vocabulary would increase the
likelihood of acceptance by users of such voice recognition
systems.

SUMMARY OF THE INVENTION

One embodiment of the present invention may include a
method of creating a natural language grammar set of data
based on an input text string. The method may include tagging
the input text string, and examining, via a processor, the input
text string for at least one first set of substitutions based on
content of the input text string. The method may also include
determining whether the input text string is a substring of a
previously tagged input text string by comparing the input
text string to a previously tagged input text string, such that
the substring determination operation determines whether the
input text string is wholly included in the previously tagged
input text string.

Another embodiment of the present invention may include
an apparatus configured to create a natural language grammar
set of data based on an input text string. The apparatus may
include a processor configured to tag the input text string, and
to examine the input text string for at least one first set of
substitutions based on content of the input text string. The
processor is further configured to determine whether the input
text string is a substring of a previously tagged input text
string by comparing the input text string to a previously
tagged input text string, such that the substring determination
operation determines whether the input text string is wholly
included in the previously tagged input text string.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example method according to an
example embodiment of the present invention.

FIG. 2 illustrates an example apparatus according to
example embodiments of the present invention.

DETAILED DESCRIPTION OF THE INVENTION

It will be readily understood that the components of the
present invention, as generally described and illustrated in the
figures herein, may be arranged and designed in a wide vari-
ety of different configurations. Thus, the following detailed
description of the embodiments of a method, apparatus, and
computer program and/or system, as represented in the
attached figures, is not intended to limit the scope of the
invention as claimed, but is merely representative of selected
embodiments of the invention.

The features, structures, or characteristics of the invention
described throughout this specification may be combined in
any suitable manner in one or more embodiments. For
example, the usage of the phrases “example embodiments”,
“some embodiments”, or other similar language, throughout
this specification refers to the fact that a particular feature,
structure, or characteristic described in connection with the

US 9,122,675 Bl

3

embodiment may be included in at least one embodiment of
the present invention. Thus, appearances of the phrases
“example embodiments”, “in some embodiments”, “in other
embodiments”, or other similar language, throughout this
specification do not necessarily all refer to the same group of
embodiments, and the described features, structures, or char-
acteristics may be combined in any suitable manner in one or
more embodiments.

Creating and deploying natural language (NL) grammar to
be used in a natural language processing algorithm can be
costly and time-consuming. Automating the process of NL
grammar creation could increase the popularity of such algo-
rithms, as every stage of the product cycle could be controlled
via the web or via an automated processing engine.

Given a tagging strategy, a prototype grammar writing
program that was capable of writing an NI, grammar with
80% accuracy in 20 seconds has a chance at success based on
its practicality. Ideally, increasingly higher percentages in
accuracy would be optimal, however, 80% at 20 seconds
processing demonstrates the potential to create more accurate
NL grammar sets in a short period of time. It is well estab-
lished that having a human create the grammar is too slow,
and, although fairly accurate, a time frame of weeks is not
feasible for a product strategy.

A rapid turn around time of 20 seconds, coupled with a data
management system, should allow automated NL solutions to
achieve near human written performance in a very short
period of time. An NL, grammar set might achieve a first round
accuracy of 80%, but over the course of the first day, it might
be updated multiple times ending the first day at 85% accu-
racy.

Example embodiments of the present invention implement
a program that accepts a set of tagged data strings as input.
The first operation of the program may be to expand the set of
input strings, if desired. The program may use a set of com-
mon substitutions. For example, a string may contain a word
that is subject to any of a plurality of common language
substitutions. The program may ensure that all possible vari-
ants of the string exist and creating them if they do not already
exist. For example, the “my” in the string “pay my bill” would
be noted by the program. The program would create the
additional strings “pay our bill”, “pay a bill”, “pay the bill”,
“pay bill”, etc. The program would then loop through the
strings in a sorted order

The sorted order may be sorted by length from longest to
shortest, then again sorted alphabetically. As the program
processes a tagged string, it checks to see if that tagged string
is a substring of a previous tagged string. The substring may
be considered a portion of a larger string, such that the sub-
string is wholly contained in the content of the larger string. If
the present input string is a substring of a previously tagged
string, the programs checks to see if both strings have the
same tag. If both strings have the same tag, the program notes
that there is no reason for the longer string to be part of the
interpretation grammar, because the shorter string will pro-
vide coverage for the longer string. If the two strings have
different tags, then the script notes that the longer string will
need to be written, as is, in the interpretation grammar to
ensure that the shorter string will not interfere with the inde-
pendent content of the longer string in the completed gram-
mar. After all of the strings have been processed, the program
writes compilation grammar source code to a file.

Referring to the program operations, the program goes
through the tagged strings by length from longest to shortest,
comparing each string with all of the strings shorter than itself
from longest to shortest. The program will stop when it finds
the longest shorter string that is an exact substring that is

20

35

40

45

50

55

60

4

wholly contained in the longer string. If the shorter string
shares the same tag as the longer string, the script counts on
the shorter string being able to tag the longer string correctly.
For example, a comment is made in the grammar. If the
shorter string has a different tag than the longer string, then
the whole longer string is put in the interpretation grammar to
ensure it gets the correct tag and the program keeps going
without eliminating the longer string from the grammar.

One example of strings that share a common tag may be
denoted by strings “mailing address™ and “address” being the
only strings tagged as “ADDRESS_AMBIG.” In this
example, the script wrote the grammar as: ADDRESS_AM-
BIG [(address); “mailing address”, so that the tag “ADDRES-
S_AMBIG” identifies both the strings “mailing address” and
“address.”

Below is a sample run of the various strings being com-
pared and ultimately some strings being eliminated due to
even smaller strings or substrings being present (See Table 1).
The numbering scheme simply represents lines of code
increasing in number.

Table 1

1/1157 “1’d like to place an order and i’d like to return an

item”

2/1157 “i’d like to speak with a customer service

representative”—“‘customer service representative”

3/1157 “1 need to speak with a customer service

representative”—“‘customer service representative”

4/1157 “i’d like to speak to a customer service

representative”—“‘customer service representative”

5/1157 “1 need to speak to a customer service

representative”—“i need to speak to a customer service”

6/1157 “i need to talk to a customer service

representative”—“‘customer service representative”

7/1157 “1 need to speak to someone in customer

service”—“1 need to speak to someone”

8/1157 “i need to speak with a customer

representative”—“‘customer representative”

9/1157 “’d like to speak to a customer

representative”—“‘customer representative”

10/1157 “’d like to replace i’d like to place an

order”—*replace i’d like to place an order”

11/1157 “i’d like to place an order and return an

item”—“place an order and return an item”

12/1157 “i need to talk to someone in customer

service”—“i need to talk to someone”

13/1157 “i’d like to talk to a customer

representative”—“‘customer representative”

14/1157 “1 need to speak to a customer

representative”—“‘customer representative”

15/1157 “1*d like to speak to a representative please”—“1’d

like to speak to a representative”

16/1157 “i need to return an item and place an

order”—“‘return an item and place an order”

17/1157 “i need to place an order and return an

item”—“place an order and return an item”

18/1157 “i1 need to speak with a customer service

rep”—=“‘customer service rep”

19/1157 “i need to speak to a representative please” 1

need to speak to a representative”

20/1157 “1 want to speak to a representative please”—“1i

want to speak to a representative”

21/1157 “place an order 1’d like to place an order”—“an

order 1’d like to place an order”

22/1157 “i need to check on the status of an

order”—*“check on the status of an order”

23/1157 “1 need to speak to a customer service rep”—“i

need to speak to a customer service”

US 9,122,675 Bl

5

24/1157 “i would like to speak to a representative”—“like

to speak to a representative”

25/1157 “ineed to speak to a sales representative”—>“sales

representative”

26/1157 “i need help with an order on the internet”

27/1157 “1°d like to check the status of an order”—“check

the status of an order”

28/1157 “i need to talk to a customer service

rep”—=“‘customer service rep”

29/1157 “1°d like to place an order with a person”

30/1157 “i need to talk to someone about an order”

31/1157 “1’d like to speak with a representative”—speak

with a representative”

32/1157 “i need to talk to someone about an item”

33/1157 “’d like to speak with customer

service”—“‘customer service”

34/1157 “i need to check the status of an order”—“check

the status of an order”

35/1157 “i’d like to i°d like to place an order”—*i’d like to

place an order”

36/1157 “i would like to talk to representative”—*talk to

representative”

37/1157 “i need to check the status of my order”—“status

of my order”

38/1157 “i would like to place an order please”—“i would

like to place an order”

39/1157 “i need to speak with a representative”—“speak

with a representative”

40/1157 “1’d like to speak to a representative”—“like to

speak to a representative”

41/1157 1 need to speak

service”—“‘customer service”

42/1157 “uh i need to talk to a representative”—“i need to

talk to a representative”

43/1157 “i need to speak

service”—“‘customer service”

44/1157 “i need to speak to an account manager”

45/1157 “i need to set up a government account.”

As may be observed from Table 1, the input text strings on
the left of the arrow—are compared to previous text strings on
the right of the arrow. When a substring is matched as being
wholly part of the larger input string, the comparison provides
areplacement by the smaller substring. Line 5 is bolded as the
string “I need to speak to a customer service representative” is
replaced with “I need to speak to a customer service” A
similar occurrence is present at line 23 which is also bolded,
except the “rep” word has been used as a replacement for
“representative.” An ever further substring replacement
operation is shown at line 43 where “customer service” has
been used as an even newer and shorter replacement sub-
string.

As may be observed from Table 1, the substrings are used
to replace longer input strings and to generate source code
that includes the defined NI grammar that will be used to
generate strings of words from other alternative strings of
words. Such a procedure provides a language rule generator
that can be used to match input from a spoken individual to a
machine defined term or phrase. The end result is a satisfac-
tory outcome from the user’s spoken input, such as, “cus-
tomer service representative” being interpreted as “customer
service” which may in turn be used as a parameter to connect
a caller with the correct department.

The operations of a method or algorithm described in con-
nection with the embodiments disclosed herein may be
embodied directly in hardware, in a computer program
executed by a processor, or in a combination of the two. A
computer program may be embodied on a computer readable

with customer

to a customer

10

20

25

30

40

45

50

6

medium, such as a storage medium. For example, a computer
program may reside in random access memory (“RAM”),
flash memory, read-only memory (“ROM”), erasable pro-
grammable read-only memory (“EPROM™), electrically
erasable programmable read-only memory (“EEPROM”),
registers, hard disk, a removable disk, a compact disk read-
only memory (“CD-ROM”), or any other form of storage
medium known in the art.

An exemplary storage medium may be coupled to the
processor such that the processor may read information from,
and write information to, the storage medium. In the alterna-
tive, the storage medium may be integral to the processor. The
processor and the storage medium may reside in an applica-
tion specific integrated circuit (“ASIC”). In the alternative,
the processor and the storage medium may reside as discrete
components. For example FIG. 2 illustrates an example net-
work element 200, which may represent any of a variety of
different processing platforms used to execute the program
described above.

As illustrated in FIG. 2, amemory 210 and a processor 220
may be discrete components of the network entity 200 that are
used to execute an application or set of operations. The appli-
cation may be coded in software in a computer language
understood by the processor 220, and stored in a computer
readable medium, such as, the memory 210. Furthermore, a
software module 230 may be another discrete entity that is
part of the network entity 200, and which contains software
instructions that may be executed by the processor 220. In
addition to the above noted components of the network entity
200, the network entity 200 may also have a transmitter and
receiver pair configured to receive and transmit communica-
tion signals (not shown).

One example embodiment of the present invention may
include a method of creating a natural language grammar set
of'data based on an input text string. The method may include
tagging the input text string at operation 101. The method
may also include examining, via a processor, the input text
string for at least one first set of substitutions based on content
of the input text string at operation 102. The method may
further include determining whether the input text string is a
substring of a previously tagged input text string by compar-
ing the input text string to a previously tagged input text
string, such that the substring determination operation deter-
mines whether the input text string is wholly included in the
previously tagged input text string at operation 103.

While preferred embodiments of the present invention
have been described, it is to be understood that the embodi-
ments described are illustrative only and the scope of the
invention is to be defined solely by the appended claims when
considered with a full range of equivalents and modifications
(e.g., protocols, hardware devices, software platforms etc.)
thereto.

What is claimed is:

1. A method, comprising:

examining, via a processor, a tagged input text string for at
least one first set of substitutions based on content of the
input text string;

determining the input text string is a substring of a previ-
ously tagged input text string;

determining the input text string and at least one additional
input text string share a common pre-assigned tag iden-
tifier stored in a memory location; and

eliminating at least one of the input text string and the at
least one additional input text string from a natural lan-
guage grammar.

US 9,122,675 Bl

7

2. The method of claim 1, further comprising:

performing the at least one first set of substitutions by
expanding the input text string to create at least one
additional input text string that includes at least one
portion of the input text string and at least one additional
portion not previously part of the input text string.

3. The method of claim 2, wherein each of the at least one
additional input text string contains words that are the same as
the input text string except at least one word has been
removed from the input text string and has been replaced by
a different word in the at least one additional input text string.

4. The method of claim 1, wherein eliminating at least one
of'the input text string and the at least one additional input text
string from the natural language grammar comprises deter-
mining which comprises a longer input text string and elimi-
nating that which is a longer input text string among the input
text string and the at least one additional input text string.

5. The method of claim 1, wherein if the input text string
and the at least one additional input text string do not share a
common pre-assigned tag identifier stored in the memory
location, then maintaining the input text string and the at least
one additional input text string in the natural language gram-
mar by writing both the input text string and at least one
additional input text string to a source code stored in the
memory location.

6. The method of claim 1, wherein the input text string is a
plurality of text strings each of which are examined, via the
processor for the at least one first set of substitutions based on
content of the additional input text strings, and wherein at
least one of the plurality of input text strings are used to
generate a grammar source code file.

7. An apparatus, comprising:

a processor configured to

examine a tagged input text string for at least one first set
of substitutions based on content of the input text
string,

determine the input text string is a substring of a previ-
ously tagged input text string, determine the input text
string and at least one additional input text string share
a common pre-assigned tag identifier stored in a
memory location, and

eliminate at least one of the input text string and the at
least one additional input text string from a natural
language grammar.

8. The apparatus of claim 7, wherein the processor is fur-
ther configured to perform the at least one first set of substi-
tutions by expanding the input text string to create at least one
additional input text string that includes at least one portion of
the input text string and at least one additional portion not
previously part of the input text string.

9. The apparatus of claim 8, wherein each of the at least one
additional input text string contains words that are the same as
the input text string except at least one word has been
removed from the input text string and has been replaced by
a different word in the at least one additional input text string.

10. The apparatus of claim 7, further comprising:

a memory location configured to store a pre-assigned tag

identifier.

11. The apparatus of claim 10, wherein eliminating at least
one of the input text string and the at least one additional input
text string from the natural language grammar comprises
determining which is a longer input text string and eliminat-
ing that which is a longer input text string among the input text
string and the at least one additional input text string.

10

15

20

25

30

35

40

45

50

55

60

8

12. The apparatus of claim 10, wherein if the input text
string and the at least one additional input text string do not
share a common pre-assigned tag identifier stored in the
memory location, then maintaining the input text string and
the at least one additional input text string in the natural
language grammar by writing both the input text string and at
least one additional input text string to a source code stored in
the memory location.

13. The apparatus of claim 7, wherein the input text string
is a plurality of text strings each of which are examined, via
the processor for the at least one first set of substitutions based
on content of the additional input text strings, and wherein at
least one of the plurality of input text strings are used to
generate a grammar source code file.

14. A non-transitory computer readable storage medium
configured to store a set of instructions that when executed
causes a processor to perform:

examining a tagged input text string for at least one first set

of substitutions based on content of the input text string;
determining the input text string is a substring of a previ-
ously tagged input text string;
determining the input text string and the at least one addi-
tional input text string share the common pre-assigned
tag identifier stored in a memory location; and

eliminating at least one of the input text string and the at
least one additional input text string from a natural lan-
guage grammar.

15. The non-transitory computer readable storage medium
of claim 14, wherein the processor is further configured to
perform:

the at least one first set of substitutions by expanding the

input text string to create at least one additional input
text string that includes at least one portion of the input
text string and at least one additional portion not previ-
ously part of the input text string.

16. The non-transitory computer readable storage medium
of claim 15, wherein each of the at least one additional input
text string contains words that are the same as the input text
string except at least one word has been removed from the
input text string and has been replaced by a different word in
the at least one additional input text string.

17. The non-transitory computer readable storage medium
of claim 15, wherein eliminating at least one of the input text
string and the at least one additional input text string com-
prises determining which is a longer input text string.

18. The non-transitory computer readable storage medium
of'claim 17, wherein eliminating at least one of the input text
string and the at least one additional input text string com-
prises eliminating that which is a longer input text string
among the input text string and the at least one additional
input text string.

19. The non-transitory computer readable storage medium
of’claim 15, wherein if the input text string and the at least one
additional input text string do not share a common pre-as-
signed tag identifier stored in the memory location, then
maintaining the input text string and the at least one additional
input text string in the natural language grammar.

20. The non-transitory computer readable storage medium
of claim 19, wherein maintaining the input text string and the
at least one additional input text string in the natural language
grammar is performed by writing both the input text string
and at least one additional input text string to a source code
stored in the memory location.

#* #* #* #* #*

